organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Miao Du* and Xiao-Jun Zhao

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: dumiao@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.033 wR factor = 0.111 Data-to-parameter ratio = 5.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Hydrogen-bonding in 4-(hydroxymethyl)imidazolium picrate

The title compound, $C_4H_7N_2O^+ \cdot C_6H_2N_3O_7^-$, crystallizes in space group $P2_1$ with one ion pair in the asymmetric unit. Strong $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot O$ hydrogen bonds, together with weak $C-H \cdot \cdot \cdot O$ contacts between the two components, generate a two-dimensional layered structure containing $R_1^2(6)$, $R_2^1(7)$, $R_3^3(10)$ and $R_5^5(24)$ rings. These layers are further connected by an additional $C-H \cdot \cdot \cdot O$ interaction, resulting in an extensive three-dimensional hydrogen-bonding network.

Comment

The assembly and construction of two-component molecular crystals with predictable topologies and properties has become one of the main goals of crystal engineers working on the synthesis of purely organic molecular crystals; this has a considerable importance in designing not only new organic solids materials but also solid-state photoreactions (Desiraju, 1995; Koshima et al., 1996). Nowadays it is well known that both strong $O-H \cdots O$ and weak $C-H \cdots O$ hydrogen bonds are useful in crystal design for the preparation of molecular materials with controlled physical properties (Desiraju, 1991; Desiraju & Steiner, 1999). Thus, in discussing the packing modes of molecular crystals, it is important to understand weaker forces, such as C–H···O hydrogen bonding and π – π stacking interactions, which play an important role in controlling the total supramolecular network. In the present paper, we report the crystal structure of the title compound, (I), and the hydrogen-bonding interactions in detail.

A view of the ion pair of (I) with the atomic numbering scheme is depicted in Fig. 1. Selected bond lengths and angles are listed in Table 1. X-ray analysis of the crystal structure confirmed that the ratio of acid to base is 1:1, and the ions are connected through several kinds of hydrogen bonds, as detailed below, with the transfer of a proton to form the salt. Both cation and anion possess non-planar geometry: for the cation, the out-of plane O1 atom is 1.117 (4) Å from the mean plane of the remaining non-H atoms [the maximum deviation of any fitted atom from the mean plane is 0.007 (4) Å, while the average deviation is 0.003 (2) Å], as also indicated by the torsion angles [122.2 (5)° for C3-C2-C1-O1 and -59.2 (5)° for N1-C2-C1-O1]; for the picrate anion, the three nitro groups form dihedral angles of 10.6 (4), 33.0 (5)

Received 6 October 2003 Accepted 20 October 2003 Online 8 November 2003

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The independent components of compound (I), showing the atomlabeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Part of the crystal structure of (I), showing the two-dimensional hydrogen-bonding layer containing $R_1^2(6)$, $R_2^1(7)$, $R_3^3(10)$ and $R_5^5(24)$ motifs.

and 13.6 (5) with the mean phenol plane [the maximum deviation of any fitted atom from the mean plane is 0.030 (3) Å, while the average deviation is 0.017 (3) Å].

Analysis of the crystal packing of (I) showed that there exist numerous hydrogen bonds, such as strong $N-H \cdots O$ or O- $H \cdots O$, and weak hydrogen-bonding interactions of the C- $H \cdots O$ type, as listed in Table 2. The atom H1C on the N1 donor of the 4-hydroxymethylimidazolium cation forms two intermolecular $N1 - H1C \cdot \cdot \cdot O2^{i}$ and $N1-H1C\cdots O7^{i}$ [symmetry code: (i) 1 - x, $y - \frac{1}{2}$, 1 - z] hydrogen bonds with the phenol and one nitro group of the picrate anion, respectively, connecting the cation/anion pair as depicted in Fig. 2. The resulting motif A, in the formalism of graph-set analysis of hydrogen-bond patterns (Etter, 1990; Etter et al., 1990), is characterized as $R_1^2(6)$. Two similar O1-H1···O2ⁱ and O1- $H1 \cdots O6^{i}$ hydrogen bonds are also observed between the hydroxy group of the cation, and the phenol and another nitro group of the picrate anion, also resulting in an $R_1^2(6)$ ring B. Meanwhile, the $O1-H1\cdots O2^{i}$ and $N1-H1C\cdots O2^{i}$ interactions involving the phenol group generate an $R_2^1(7)$ motif C.

Three-dimensional packing diagram of (I), showing the intermolecular $C1-H1A\cdots O1$ interactions between the layers.

Both the C1-H1B and the C3-H3A groups of the 4hydroxymethylimidazolium cation form weak C1-H1B···O3ⁱⁱ and C3-H3A···O3ⁱⁱ [symmetry code: (ii) -x, $y - \frac{1}{2}, 2 - z$ interactions with the remaining nitro group of the picrate anion, generating an $R_1^2(6)$ motif D. For the remaining C4-H4A and N2-H2B groups of the 4-hydroxymethylimidazolium cation, one intramolecular C4-H4A···O4 interaction with the nitro atom of the picrate anion and one intermolecular N2-H2B···O1ⁱⁱⁱ [symmetry code: (iii) -x, $y + \frac{1}{2}$, 2 - z] hydrogen bond with the hydroxy group of the adjacent 4-hydroxymethylimidazolium cation are observed, resulting in an $R_3^3(10)$ graph set E. Thus, the cation and anion components are connected to form a two-dimensional layered structure with the repeating unit F, $R_5^5(24)$, consisting of three cations and two picrate anions (Fig. 2). In addition, these layers are further extended through interlayer C1- $H1A \cdots O1^{iv}$ [symmetry code: (iv) x + 1, y, z] weak interactions to form a three-dimensional supramolecular network, as shown in Fig. 3. There is no evidence of any aromatic $\pi - \pi$ stacking or $C-H \cdot \cdot \pi$ interactions. Examination of the structure with PLATON (Spek, 2003) shows that there are no solvent-accessible voids in the crystal structure of (I).

Experimental

Well shaped cuboidal yellow single crystals of the title compound, (I), suitable for X-ray diffraction analysis, were prepared by spontaneous crystallization from hot water of the individual components (4-hydroxymethylimidazole and picric acid).

Crystal data

-	
$C_4H_7N_2O^+ \cdot C_6H_2N_3O_7^-$	$D_x = 1.696 \text{ Mg m}^{-3}$
$M_r = 327.22$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 2351
a = 3.7925 (14) Å	reflections
b = 13.916(5)Å	$\theta = 1.7 - 25.0^{\circ}$
c = 12.141 (4) Å	$\mu = 0.15 \text{ mm}^{-1}$
$\beta = 90.862(5)^{\circ}$	T = 293 (2) K
$V = 640.7 (4) \text{ Å}^3$	Prism, yellow
Z = 2	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART 1000	1187 independent reflections
diffractometer	1019 reflections with $I > 2\sigma(I)$
w scans	$R_{\rm int} = 0.022$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS (Sheldrick, 1996)	$h = -4 \rightarrow 3$
$T_{\rm min} = 0.957, T_{\rm max} = 0.983$	$k = -9 \rightarrow 16$
2660 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0716P)^2]$
$wR(F^2) = 0.111$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.15	$(\Delta/\sigma)_{\rm max} < 0.001$
1187 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
209 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C4-N2	1.306 (6)	C8-O2	1.252 (5)
C4-N1	1.322 (6)	C9-N5	1.453 (6)
C3-C2	1.350 (6)	N3-O4	1.224 (6)
C3-N2	1.375 (6)	N3-O3	1.228 (6)
C2-N1	1.379 (5)	N4-O6	1.211 (5)
C2-C1	1.494 (6)	N4-O5	1.226 (6)
C1-O1	1.426 (6)	N5-O7	1.217 (4)
C5-N3	1.456 (4)	N5-O8	1.223 (5)
C7-N4	1.470 (6)		
C4-N1-C2	109.1 (4)	O6-N4-O5	123.4 (4)
C4-N2-C3	109.3 (4)	O7-N5-O8	121.4 (4)
O3-N3-O4	123.2 (4)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C4-H4A····O4	0.93	2.37	3.294 (5)	172
$O1-H1\cdots O2^i$	0.82	2.00	2.787 (4)	162
$O1 - H1 \cdots O6^i$	0.82	2.30	2.797 (4)	120
$N1-H1C\cdots O2^{i}$	0.86	1.95	2.730 (5)	151
$N1-H1C\cdots O7^{i}$	0.86	2.18	2.796 (4)	129
C3−H3A···O3 ⁱⁱ	0.93	2.56	3.280 (4)	135
$C1-H1B\cdots O3^{ii}$	0.97	2.55	3.402 (5)	147
$N2-H2B\cdots O1^{iii}$	0.86	1.99	2.811 (5)	160
$C1-H1A\cdots O1^{iv}$	0.97	2.47	3.393 (5)	159

Symmetry codes: (i) $1 - x, y - \frac{1}{2}, 1 - z$; (ii) $-x, y - \frac{1}{2}, 2 - z$; (iii) $-x, \frac{1}{2} + y, 2 - z$; (iv) 1 + x, y, z.

All H atoms were found in a difference electron-density map but were then placed in calculated positions (C-H = 0.97 and 0.93 Å for methylene and aromatic H atoms, respectively; N-H and O-H distances are 0.86 and 0.82 Å, respectively), and were included in the final refinement in the riding-model approximation, with $U_{iso}(H) =$ $1.2U_{eq}(C,N)$ for C- or N-bound hydrogen atoms and $1.5U_{eq}(O)$ for O-H. It was impossible to determine the absolute configuration in this case, due to the absence of sufficiently heavy atoms. The Friedel pairs were merged, giving a data/parameter ratio of only 5.7.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL*97.

This work was financially supported by the Starting Fund of Tianjin Normal University (to MD).

References

- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 35, 2311-2327.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond in Structural Chemistry and Biology*. Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.Koshima, H., Ding, K. L., Chisaka, Y. & Matsuura, T. (1996). J. Am. Chem. Soc. 118, 12059–12065.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.